All nanomaterials

Abbreviation Nanomaterial Size Aggregate
size[1]
ENM
electrophoretic
mobility
(µm/(V/cm)-s)[2]
Refractive
index
Dispersant Source
aminofullerene Amine functionalized fullerene - 212.8 ± 60.3 +0.52 2.2 [3]  - Prof. Alvarez's lab,
Rice University
CB Carbon Black Diameter: 42 nm 272.2 ± 21.1 -2.49 2 [4] 0.0025%
SDS
Fisher Scientific #50-901-08775,
Waltham, MA
CeO2 Cerium oxide nanopowder Diameter: <25 nm 90.9 ± 6.0 +2.41 -  - Aldrich #544841, St.
Louis, MO
Fullerol Fullerol (C60(OH)x
(ONa)y, x+y=24,y=6-8)
- 148.5 ± 22.0 -0.82 2.2  - MER, Tucson, AZ
GO Graphene oxide - 601.2 ± 52.2 -2.63 2.2  - Prof. Ajayan’s lab,
Rice University
Graphene Graphene - 342.4 ± 26.2 -2.68 2.2 Tannic acid Prof. Ajayan’s lab,
Rice University
Graphene Graphene - 342.4 ± 26.2 - 2.2  - Prof. Ajayan’s lab,
Rice University
MWNT-15-20 Multi-walled carbon nanotubes Outer Diameter: 15±5 nm
Length: 5-20 µm
606.4 ± 40.7 -0.82 2.2 Tannic acid Nanolab, Waltham, MA
MWNT-15-20 Multi-walled carbon nanotubes Outer Diameter: 15±5 nm
Length: 5-20 µm
606.4 ± 40.7 - 2.2  - Nanolab, Waltham, MA
MWNT-15-5 Multi-walled carbon nanotubes Outer Diameter: 15±5 nm
Length: 1-5 µm
483.9 ± 37.1 -2.67 2.2 Tannic acid Nanolab, Waltham, MA
MWNT-15-5 Multi-walled carbon nanotubes Outer Diameter: 15±5 nm
Length: 1-5 µm
483.9 ± 37.1 - 2.2  - Nanolab, Waltham, MA
MWNT-30-5 Multi-walled carbon nanotubes Outer Diameter: 30±15 nm
Length: 1-5 µm
411.6 ± 50.2 -2.67 2.2 Tannic acid Nanolab, Waltham, MA
MWNT-30-5 Multi-walled carbon nanotubes Outer Diameter: 30±15 nm
Length: 1-5 µm
411.6 ± 50.2 - 2.2  - Nanolab, Waltham, MA
MWNT-COOH Carboxylated multi-walled
carbon nanotubes
Outer Diameter: 15±5 nm
Length: 1-5 µm
75.9 ± 10.6 -2.97 2.2  - Nanolab, Waltham, MA
MWNT-NH2 Amine functionalized multi-walled
carbon nanotubes
Outer Diameter: 15±5 nm
Length: 1-5 µm
361.1 ± 18.7 -2.5 2.2 Tannic acid Nanolab, Waltham, MA
MWNT-NH2 Amine functionalized multi-walled
carbon nanotubes
Outer Diameter: 15±5 nm
Length: 1-5 µm
361.1 ± 18.7 - 2.2  - Nanolab, Waltham, MA
MWNT-OH Hydroxylated multi-walled
carbon nanotubes
Outer Diameter: 13-18 nm
Length: 1-12 µm
383.3 ± 31.7 -2.63 2.2 Tannic acid CheapTubes, Brattleboro, VT
MWNT-OH Hydroxylated multi-walled
carbon nanotubes
Outer Diameter: 13-18 nm
Length: 1-12 µm
383.3 ± 31.7 - 2.2  - CheapTubes, Brattleboro, VT
nano-Ag nano Ag Diameter: 1-70 nm [5] 19.36 ± 2.6 -2.38 1.59 [6]  - Novacentrix, Austin, TX
nC60 Fullerene nanoparticles - 101.9 ± 40.4 [7] -3.36 2.2  - MER, Tucson, AZ
RGO Reduced graphene oxide - 684.4 ± 90.4 -2.53 2.2  - Prof. Ajayan’s lab,
Rice University
SiO2 Silica, fumed Diameter: 200-300 nm 221.8 ± 17.7 -1.19 1.46  - Sigma #S5505, St.
Louis, MO
SWNT Single-walled carbon nanotubes Outer Diameter: ~1.5 nm
Length: 1-5 µm
678.6 ± 89.8 -2.35 2.2 Tannic acid Nanolab, Waltham, MA
SWNT Single-walled carbon nanotubes Outer Diameter: ~1.5 nm
Length: 1-5 µm
678.6 ± 89.8 - 2.2  - Nanolab, Waltham, MA
TiO2 nanoparticle Titanium dioxide, anatase Diameter: <25 nm 222.1 ± 50.7 -0.85 2.488  - Aldrich #637254,St.
Louis, MO
TiO2 nanotube Titanium dioxide nanotubes Inner diameter: ~200;
Wall thickness: ~20;
Length: 10-100 µm
408.2 ± 77.0 -0.15 2.488  - Prof. Lou’s lab,
Rice University
UV irradiated nC60 UVA-irradiated fullerene nanoparticles - 109.4 ± 7.2 [7] -1.13 2.2  - MER, Tucson, AZ

 

Footnotes:
  1. Number mean hydrodynamic diameter nm. Measured by dynamic light scattering (Zetasizer Nano, Malvern, Worcestershire, UK)
  2. Measured at ~pH 5.
  3. Lee, J., et al., Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems. Environmental science & technology, 2009, 43.17, 6604-6610.
  4. Bond, T.C., Bergstrom, R.W., Light absorption by carbonaceous particles: An investigative review. Aerosol Science and Technology. 2006, 40.1, 27-67.
  5. Zodrow, K.; Brunet, L.; Mahendra, S.; Li, D.; Zhang, A.; Li, Q. L.; Alvarez, P. J. J., Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res. 2009, 43, (3), 715-723.
  6. Saha, S., et al., Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodulosa and its antimicrobial activity. Dig J Nanomater Biostruct. 2010, 5, 887-895.
  7. Qu, X. L.; Hwang, Y. S.; Alvarez, P. J. J.; Bouchard, D.; Li, Q. L., UV Irradiation and Humic Acid Mediate Aggregation of Aqueous Fullerene (nC(60)) Nanoparticles. Environ. Sci. Technol. 2010, 44, (20), 7821-7826.


Go to Toxicity page